

Riadenie výložníka s košom

Cieľ: Cieľom príkladu je navrhnúť spätnoväzobný regulačný obvod, resp. PID regulátor na riadenie priebehu vyrovnávajúceho momentu, ktorý udržiava montážny kôš vo vodorovnej polohe počas predpísaného otáčania ramena.

Obr. 1 Riadenie sústavy výložníka s košom

1 Zostavenie mechanického modelu sústavy

Obr. 2 Model sústavy výložníka s košom

Do prostredia programu MSC.ADAMS si najprv importujeme model montážneho koša *vyloznik_s_kosom.cmd*. Model obsahuje rameno výložníka spojené so základom rotačnou geometrickou väzbou. V tomto spojení pôsobí na rameno kinematická väzba vo forme predpísaného pohybu (MOTION_1) podľa harmonickej funkcie *SHF(x,x0,a,w,phi,b)*, ktorá zabezpečuje kmitavý pohyb výložníka v rozsahu od -180° po 0°.

Montážny kôš je pripojený na rameno rotačnou geometrickou väzbou, do ktorej neskôr aplikujeme riadený vyrovnávací moment.

Ako prvú vykonáme dynamickú simuláciu (1 sek., 300 krokov) otáčania ramena montážneho koša bez vyrovnávacieho momentu. Je zrejmé že nastane rotačný pohyb koša, ktorý budeme musieť eliminovať vyrovnávajúcim momentom.

2 Zostavenie riadiaceho systému

V nasledujúcom zostavíme riadiaci systém, ktorého úlohou bude vypočítavať veľkosť vyrovnávajúceho krútiaceho momentu. Schematicky je systém riadenia načrtnutý na obr. 3.

Obr. 3 Schéma uzatvoreného systému riadenia polohy koša s proporcionálnym regulátorom a spätnou väzbou

Mechanická sústava je potom ovplyvňovaná veličinou u podľa predpisu:

$$u = K_{p}e$$

Označenia v schéme uzatvoreného systému riadenia na obr. 2:

- Vyžadovaná porovnávacia (referenčná) veličina (uhol): Хtheta_des = 0
- Meraná regulovaná veličina (okamžitý uhol): **y** theta_act = AZ (MAR_B, MAR_A)
- Rozdiel (error) v sčítacom bloku: e theta_sum = theta_des - theta_act
- K_p -Proporcionálny súčiniteľ zosilnenia Kp = 1e9
- Akčná regulačná veličina je zosilnenie pre vyrovnávací u moment: S

FORCE_1,
$$u = Kp*e$$

Poruchová veličina (predpísaný pohyb mechanickej sústavy): Ζ-MOTION_1

Uvedený riadiaci systém implementujeme do programu ADAMS prostredníctvom sady nástrojov Controls Toolkit:

MB >> Build >> Controls Toolkit >> Standard Control Blocks

Tieto nástroje umožňujú implementáciu základných prvkov regulačných obvodov (obr. 4). Regulačný obvod utvárame logickou nadväznosťou podľa obr. 3.

Sčítací blok	Blok zosilnenia	,Integrátor	, Dolný prepúšťací filter
Vstupný signál	Treate Controls Block		
	$f \rightarrow \Sigma K \frac{1}{s}$	$\frac{1}{s+a}$ $\frac{s+b}{s+a}$ F	Filter predstihu a oneskorenia
Užívateľom definovaná prenosová funkcia	n(s) d(s) ^{2nd-} order filter PID	F	Prepínač
Filter druhého rádu	Name: Lift_Mechanism.in	iput_1	
PID riadenie	Input Function		
	Function:		
	0.0		

Obr. 4. Prostredie nástrojov Controls Toolkit

Vstupným signálom do sústavy bude požadovaná (*theta_des*) a skutočná (*theta_act*) hodnota natočenia koša.

Pre vytvorenie vstupného signálu *theta_des* postupujeme podľa obr. 5. Voľbu potvrdíme tlačidlom *Apply*.

🕈 Cre	🕈 Create Controls Block 🛛 🛛 🔀						
$f_i \rightarrow$	Σ	Κ	$\frac{1}{s}$	$\frac{1}{s+a}$	s+b s+a		
$\frac{n(s)}{d(s)}$	2nd– order filter	PID	-^-				
Name:	.kos	theta_	_des				
		Input F	unctio	า			
Funct	ion:						
0.0							

Obr. 5 Definovanie vstupného signálu – požadovaného uhla natočenia *theta_des*

Ďalší vstupný signál *theta_act* vytvoríme kliknutím na ikonu vstupného signálu a postupujeme podľa obr. 6. Voľbu potvrdíme tlačidlom *Apply*.

🕈 Cre	🕈 Create Controls Block 🛛 🛛 🔀						
$f_i \rightarrow$	Σ	Κ	$^{1}\!\!/_{s}$	$\frac{1}{s+a}$	s+b s+a		
$\frac{n(s)}{d(s)}$	2nd– order filter	PID					
Name:	.kos	.theta_	act				
		Input F	unction	n			
Function:							
AZ(MAR_B, MAR_A)							

Obr. 6 Definovanie vstupného signálu – skutočného uhla natočenia theta_act

Sumačný člen vytvorím kliknutím na ikonu sčítacieho bloku. Voľbu potvrdíme tlačidlom *Apply*.

🦻 Create Controls Block 🛛 🛛 🔀						
$f_{i} \!$	Σ	Κ	$\frac{1}{s}$	$\frac{1}{s+a}$	<u>s+b</u> s+a	
$\frac{n(s)}{d(s)}$	2nd– order filter	PID	-^-			
Name	.kos	theta_	_sum			
	Su	Imming	j Junct	ion		
Input	1:					
	theta_o	des				
Input 2:						
+ theta_act						

Obr. 7 Definovanie sumačného člena

Blok zosilnenia vytvoríme kliknutím na ikonu bloku zosilnenia. Voľbu potvrdíme tlačidlom *OK*.

🕈 Create Controls Block 🛛 🛛 🔀					
$f_i \rightarrow$	Σ	Κ	$\frac{1}{s}$	$\frac{1}{s+a}$	<u>s+b</u> s+a
$\frac{n(s)}{d(s)}$	2nd- order filter	PID			
Name:	.kos	.Кр			
		Ga	ain		
Input:					
theta	a_sum				
Gain:					
1e9					

Obr. 8 Definovanie bloku zosilnenia

Týmto krokom máme model riadiaceho okruhu ukončený.

3 Výpočet regulačného krútiaceho momentu

V ďalšom je potrebné zabezpečiť pôsobenie krútiaceho momentu medzi telesami koša a výložníka v mieste markera *MAR_A*. Veľkosť krútiaceho momentu je vypočítavaná riadiacim systémom tak, aby udržal kôš vo vodorovnej polohe. Pri modelovaní je dôležité zachovať správnu definíciu akčného a reakčného člena.

MTB >> Applied force: Torque (Single Component) Run-time Direction: Two Bodies (^L) KOS (^L) VYLOZNIK ground.MAR_A ground.MAR_A

🧷 Modify Torq	ue 🔀
Name	SFORCE_1
Direction	Between Two Bodies
Action Body	KOS
Reaction Body	VYLOZNIK
Define Using	Function
Function	.kos.Kp.Kp
Solver ID	0
Torque Display	On Action Body
1	<u> </u>

Obr. 9 Definícia krútiaceho momentu

Veľkosť krútiaceho momentu môžeme zadefinovať použitím nástroja Function Builder:

				🗇 Database Navigator	
				Browse	~
> Function Builder				- kos - Kp	Model controls_
Define a runtime function		C Full names © Short n	ames C ADAMS ids	HD + theta_act + theta_des + theta_sum + HDI	controls_ controls_ controls_ controls_ Library
Math Functions Assist ABS ACOS AINT ANTIN ASIN ATAN ATANZ Chebyshev Polynomial Cos			<u>+,</u>	-	
COSH DIM Get EXP Fourier Cosine Series Fourier Sine Series Haversine Step Inverse Power Spectral Density	ting Object Data easures • Plot Plot Limits	Runtime_Measure Text Parameterize Field Info	Pick Browse Guesses • fy Create	 ✓ Filter All Objects 	Browse Y
				Sort by Type THi	ghlight + K Close

Obr. 10 Definovanie veľkosti krútiaceho momentu z regulačného obvodu

Po výbere hodnoty zosilnenia (*Kp*) z databázového navigátora ju potvrdíme tlačidlom *Insert Object Name* a prostredie Function Builder zatvoríme tlačidlom *OK*. Kompletná definícia krútiaceho momentu je na obr. 9.

Na sledovanie priebehu krútiaceho momentu vytvoríme merač s názvom *MEA_Krutiaci_moment*:

(^R) Torque: SFORCE_1 >> Measure:

🔉 Single Component Force Measure 🛛 🔀					
Measure Name:	MEA_Krutiaci_moment				
SFORCE:	SFORCE_1				
Characteristic:	Torque				
Component:	X C Y 🖲 🛛 C mag				
From/At: C KOS.MARKER_59 C VYLOZNIK.MARKER_60 Orientation					
Represent coordinates in:					
🔽 Create Strip Ch	art				
1	OK Apply Cancel				

Obr. 10 Merač krútiaceho momentu

Taktiež vytvoríme merač na sledovanie uhla natočenia koša voči rámu. Merač nazveme *MEA_Natocenie* so syntaxou:

AZ(MAR_B, MAR_A)

Po spustení dynamickej simulácie dostávame priebeh krútiaceho momentu, ktorý je potrebný na udržanie koša v pracovnej polohe (obr. 11).

Obr. 11 Priebeh krútiaceho momentu ktorý je potrebný na udržanie koša vo vodorovnej polohe

Taktiež môžeme sledovať ako sa správa natočenie koša. Vidíme že výchylky sú od požadovanej nulovej hodnoty minimálne.

Obr. 12 Priebeh uhlovej výchylky koša

4 PID regulácia

V ďalšom si ukážeme postup, ako implementovať PID regulátor do našej sústavy. Celý systém s PID regulátorom môžeme opísať nasledovnou schémou:

Obr. 13 Schéma PID riadenia

Mechanická sústava je ovplyvňovaná veličinou *u* podľa predpisu:

$$u = K_p e + K_i \int e dt + K_d \frac{de}{dt}$$

kde:

- K_p Proporcionálny člen
- K_i Integračný člen
- K_d Derivačný člen

Pre činnosť PID regulátora je potrebné vytvoriť nový vstup a zadefinovať deriváciu rozdielu požadovanej a reálnej hodnoty uhla natočenia. Fyzikálne sa jedná o rozdiel nulovej želanej uhlovej rýchlosti a reálnej uhlovej rýchlosti natáčania sa telesa KOS voči rámu. Táto uhlová rýchlosť je definovaná pomocou markerov MAR_A a MAR_B (obr. 14).

X Modify Controls Block							
f _i →	Σ	Κ	$\frac{1}{s}$	$\frac{1}{s+a}$	$\frac{s+b}{s+a}$		
$\frac{n(s)}{d(s)}$	2nd– order filter	PID	-~				
Name	.kos	.theta	_sum_o	deriv			
	Input Function						
Function:							
0 - WZ(MAR_B, MAR_A)							

Obr. 14 Vstup pre PID regulátor – derivácia rozdielu medzi požadovaným a skutočným natočením koša

PID regulátor s príslušnými vstupmi a konštantami definujeme po stlačení tlačidla PID (obr. 15).

🦻 Modify Contro	ls Block 🛛 🔀
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1}{s} \frac{1}{s+a} \frac{s+b}{s+a}$
Name: PID	
PID C	ontroller
Input:	
theta_sum	
Derivative Input:	
theta_sum_deriv	
P Gain:	1.0E+007
l Gain:	0.0
D Gain:	1.0E+006
Initial Condition:	0.0
→f₀	✓ i
ОКА	pply Close

Obr. 15 Definovanie PID regulátora

Pre názornejšiu ukážku PID riadenia definujme ďalej považovaný vstup *theta_des* ako natočenie koša na do polohy 45° za 0.1 sek. (na rozdiel od doterajšej nuly). Na aproximáciu môžeme použiť funkciu *STEP*.

Obr. 16 Požadovaný priebeh natočenia koša

Vstupnú požadovanú veličinu predefinujeme pomocou databázového navigátora:

🔀 Database Navigator	×	
Browse	~	
- kos MEA_Krutiaci_moment MEA_Natocenie + Kp + PID + theta_act + theta_des + theta_sum + theta_sum_deriv + MDI	Model Measure_C Controls_ controls controls controls controls controls_ Library	Modify Controls Block ▼ f→ ∑ K 1/s 1+s s+b n(s) 20d+ 00der PID ✓ - Name: .kos.theta_des Input Function Function: step(time,0,0,0.1,45d)
▼ Filter * All Objects ▼ Sort by Type ▼ □ Highlig OK	Browse	→f _o ✓ i OK Apply Close

```
MB >> Edit >> Modify ...
```

Obr. 17 Modifikácia požadovaného priebeh natočenia koša – theta_des

Nakoniec je potrebné zadefinovať prepojenie vyjadrovania veľkosti krútiaceho momentu pomocou PID regulátora. Postup prevedieme podľa obr. 18.

	Function Builder				
	Define a runtime function		C Full names 🤅	Database Navigator	×
	.kos.PID.PID			Browse	~
	Math Functions Assist			- kos MEA_Krutiaci_moment HEA_Natocenie + Kp - PID PID PID + theta_act + theta des	Model Measure_C Measure_S controls controls Measure_S controls
	ACOS			+ theta_sum + theta sum deriv	controls_ controls
	ANINT ASIN ATAN			+ NDI	Library
🖉 Modify Torq	ue 🔀				
Name	SFORCE_1	Getting Object Data			
Direction	Between Two Bodies 💌	Measures -			
Action Body	KOS	,,			
Reaction Body	VYLOZNIK	Plot Plot imite			
Define Using	Function				
Function	.kos.PID.PID				
Solver ID	1				<u> </u>
Torque Display	On Action Body			All Objects	irowse 💌
	<u>O</u> K <u>Apply</u> <u>Cancel</u>			Sort by Type 🔽 🗖 Highlight	+
				ОК	Close

Obr. 18 Definovanie veľkosti krútiaceho momentu z PID regulátora

Po spustení dynamickej simulácie (1 sek. 300 krokov) môžeme sledovať pohyb koša riadení PID regulátorom. Porovnanie požadovanej a skutočnej hodnoty pre konštanty Kp = 1e7, Ki = 0, Kd = 1e6 je na obr. 18. Výhodu, ktorú ponúka program ADAMS je možnosť parametrizácie jednotlivých konštánt PID regulátora a tým možnosť sledovania ich vplyvu na správanie sa mechatronickej sústavy napr. pomocou metódy Design Study.

