
Show

Contact Friction Force Calculation

ADAMS/Solver uses a relatively simple velocity-based friction model for contacts. Specifying the frictional behavior is optional. The figure below shows how the coefficient of friction varies with slip velocity.

Coefficient of Friction Varying with Slip Velocity

Slip Velocity

In this simple model:

1 z 2 8. 8. 2008 18:36

- $\bullet \quad \mu(\neg \mathsf{v}_{\mathtt{S}}) = \mu_{\mathtt{S}}$
- $= \mu(\mathsf{v}_s) = -\mu_s$
- $\mu(0) = 0$
- $\bullet \quad \mu(\neg v_{d}) = \mu_{d}$
- $= \mu(\mathbf{v}_{\mathbf{d}}) = -\mu_{\mathbf{d}}$
- $\mu(\mathbf{v}) = -\operatorname{sign}(\mathbf{v}) \cdot \mu_{\mathbf{d}} \text{ for } |\mathbf{v}| > \mathbf{v}_{\mathbf{d}}$
- $\qquad \mu \left(\mathbf{v} \right) \; = \; -\mathrm{step}(|\mathbf{v}|, \mathbf{v}_{\mathsf{d}}, \boldsymbol{\mu}_{\mathsf{d}}, \mathbf{v}_{\mathsf{S}}, \boldsymbol{\mu}_{\mathsf{S}}) \cdot \mathrm{sign}(\mathbf{v}) \quad \mathrm{for} \;\; \mathbf{v}_{\mathsf{S}} \! \leq \! |\mathbf{v}| \! \leq \! \mathbf{v}_{\mathsf{d}}$
- $\qquad \mu \left(\mathbf{v} \right) \; = \mathsf{step}(\mathbf{v}_{\text{\tiny s}}, -\mathbf{v}_{\text{\tiny g}}, \, \mu_{\text{\tiny g}}, \, \mathbf{v}_{\text{\tiny g}}, -\mu_{\text{\tiny g}}) \quad \; \mathsf{for} \; \; -\mathbf{v}_{\text{\tiny g}} < \mathbf{v} < \mathbf{v}_{\text{\tiny g}}$

where:

V: Slip velocity at contact point

 v_s : STICTION_TRANSITION_VELOCITY

v_d: FRICTION_TRANSITION_VELOCITY

 $\mu_s: \mathsf{MU_STATIC}$

 $\mu_{\mathbf{d}}$: MU_DYNAMIC

Learn more about contacts.