

Systémové modely v prostredí programu MSC. ADAMS/View

Cieľ: Cieľom príkladu je poskytnúť pohľad na možnosti modelovania systémových modelov v prostredí programu MSC.ADAMS. Ako štúdiu si zoberieme základnú mechanickú sústavu s jedným stupňom voľnosti (pre jej jednoduchosť). Postupne zostavíme jej matematický model pomocou modelovacích prvkov programu MSC.ADAMS, ďalej vytvoríme jej matematický model vo forme prenosovej funkcie, modelu v stavovom priestore a modelu vo forme diferenciálnej rovnice. Výsledky uvedených modelov porovnáme.

Obr. 1 Mechanická sústava s jedným stupňom voľnosti

1 Model sústavy pomocou modelovacích prvkov

Obr. 2 Model sústavy s jedným stupňom voľnosti

Podľa obr. 2 zostavíme mechanický model sústavy s jedným stupňom voľnosti, pričom základnými jednotkami budú: [m, N, s, kg, Hz]. Sústava bude budená konštantnou silou s hodnotou 1 N, pričom priebeh sily bude mať charakter jednotkového skoku.

Ďalej si vytvoríme merač polohy ťažiska telesa PART_2 s názvom MEA_x (merač vytvoríme možnosťou *PART Measure*).

Jednotlivé parametre sústavy sparametrizujeme konštrukčnými premennými (*Design Variable*):

Vykonáme dynamickú simuláciu (12 sek., 1000 krokov). V merači MEA_x môžeme sledovať priebeh výchylky telesa PART_2 (prechodová charakteristika II. rádu).

Obr. 3 Priebeh posunutia ťažiska telesa PART_2

2 Model vo forme prenosovej funkcie Transfer Function - TF

Matematický model uvedenej sústavy môžeme získať napr. aplikáciou II. Newtonovho zákona vo forme:

$$m\mathcal{K}(t) + b\mathcal{K}(t) + kx(t) = F(t)$$

Po aplikácii Laplaceovej transformácie získame obraz:

$$ms^2 X(s) + bs X(s) + kX(s) = F(s)$$

z ktorého po úprave získame prenosovú funkciu systému:

$$\frac{X(s)}{F(s)} = \frac{1}{ms^2 + bs + k}$$

Túto prenosovú funkciu je teraz potrebné zadefinovať do prostredia programu MSC.ADAMS. Pre jej definíciu však najprv potrebujeme zadefinovať jej parametre vo forme stavových premenných a polí.

VSTUP – u

Vstup (input) pre prenosovú funkciu (ale aj pre model v stavovom priestore) musí byt zadefinovaný vo forme stavovej premennej:

```
MB >> System Elements >> State Variable >> New ...
```

V našom prípade je vstupom do mechanickej sústavy konštantná sila s hodnotou 1 N. Našu stavovú premennú si pomenujeme VAR_u a zadefinujeme ju nasledovne:

🔼 Modify State Variable 🛛	X
Name VAR_u	
Definition Run-Time Expression	
F(time,) = 1	
✓ Guess for F(t=0) = 0.0	
OK Apply Cancel	

Obr. 4 Definícia stavovej premennej (vstup)

Túto premennú je ďalej potrebné definovať do vstupného poľa, ktoré nazveme ARRAY_u. Toto pole priamo vstupuje do definície prenosovej funkcie.

MB >> Data Elements >> Array >> New ...

🔿 Modify S	iolver Array 🛛 🔀
Name	ARRAY_u
Solver ID	1
Туре	U (Inputs)
Variables	VAR_u
M	<u>Q</u> K <u>Apply</u> <u>C</u> ancel

Obr. 5 Definícia vstupného poľa

Stavové premenné – x

Ďalej je potrebné vytvoriť pole stavových premenných, ktoré nazveme ARRAY_x_TF.

```
MB >> Data Elements >> Array >> New ...
```

🏷 Modify Solver Array 🛛 🔀		
Name	ARRAY_x_TF	
Solver ID	2	
Туре	X (States)	
Size	2	
	<u>O</u> K <u>Apply</u> <u>Cancel</u>	

Obr. 6 Definícia poľa stavových premenných pre TF

Výstup – y

Výstupy budeme ukladať do poľa výstupov s názvom ARRAY_y_TF.

🏹 Modify Solver Array 🛛 🔀		
Name	ARRAY_y_TF	
Solver ID	3	
Туре	Y (Outputs)	
Size	1	
	<u>O</u> K <u>Apply</u> <u>Cancel</u>	

Obr. 7 Definícia poľa výstupov pre TF

Prenosová funkcia – Transfer Function

Prenosová funkcia je v prostredí MSC.ADAMS definovaná pomocou polí vstupov, stavových premenných a výstupov. Tvar prenosovej funkcie určujú koeficienty čitateľa (numerator) a menovateľa (denominator). Tieto koeficienty sa zapisujú vo forme koeficientov polynómu v smere od najmenšieho k najväčšiemu zadefinovanému mocniteľovi. Porovnaním s našou prenosovou funkciou môžeme prenosovú funkciu nazvanú Transfer_Function zadefinovať v menu:

MB >> System Elements >> Transfer Function >> New ...

🔿 Modify Transfer Function 🛛 🛛			
Transfer Function Name	Transfer_F	unction	
Input Array Name (U)	ARRAY_u	_TF	
State Array Name (X)	ARRAY_x	_TF	
Output Array Name (Y)	ARRAY_y	_TF	
Numerator Coefficients	1.0		
Denominator Coefficients	(k),(b),(m)		
	Check fo	ormat and dis	splay plot
✓ Keep value constant during static analyses.			
1			
	OK	Apply	Cancel

Obr. 8 Definícia prenosovej funkcie

Kliknutím na tlačidlo Check format and display plot si môžeme takto zadefinovanú prenosovú funkciu prezrieť vo frekvenčnej oblasti.

Obr. 9 Prenosová funkcia vo frekvenčnej oblasti

Pre účely porovnania modelov si teraz vytvoríme merač s názvom MEA_x_FT, v ktorom sa bude zaznamenávať priebeh výstupu prenosovej funkcie (teda fyzikálne ide o premiestnenie). Merač vytvoríme:

MB >> Build >> Measure >> Function >> New ...

ARYVAL(ARRAY_y_TF,1)

Po spustení simulácie zistíme, že systémový model nám dáva rovnaké výsledky ako model vytvorený pomocou modelovacích prvkov. Prípadné rozdiely môžeme spracovať v prostredí Postprocessor.

Obr. 9 Priebeh výstupu prenosovej funkcie Transfer_Function (posunutie ťažiska telesa PART_2)

2 Model v stavovom priestore State-Space - SS

Ak do pohybovej rovnice

$$m(\mathbf{x}(t) + b(\mathbf{x}(t)) + k(t) = F(t)$$

zavedieme novú premennú v(t) (rýchlosť telesa PART_3), môžeme diferenciálnu rovnicu II. rádu prepísať na sústavu dvoch diferenciálnych rovníc I. rádu nasledovne:

$$\mathbf{\hat{x}}(t) = \mathbf{v}(t)$$

$$\mathbf{\hat{x}}(t) = -\frac{b}{m} \mathbf{v}(t) - \frac{k}{m} \mathbf{x}(t) + \frac{1}{m} \mathbf{F}(t)$$

čo nám v maticovom zápise dáva:

$$\begin{bmatrix} \mathbf{x}(t) \\ \mathbf{x}(t) \\ \mathbf{x}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -\frac{\mathbf{k}}{\mathbf{1}} & -\frac{\mathbf{b}}{\mathbf{1}} \\ \mathbf{x}(t) \\$$

Ak uvažujeme maticu prenosu D nulovú a maticu výstupu C jednotkovú, dostávame model sústavy v stavovom priestore:

$$\mathbf{\hat{x}} = A\mathbf{\bar{x}} + B\mathbf{u}$$
$$\mathbf{\bar{y}} = C\mathbf{\bar{x}} + D\mathbf{u}$$

V programe MSC.ADAMS je opäť potrebné definovať pole vstupov (ARRAY_x_SS) a pole výstupov (ARRAY_y_SS).

VSTUP – u

Vstup (input) pre model v stavovom priestore musí byt zadefinovaný vo forme stavovej premennej zapísanej v poli vstupov. V našom prípade môžeme použiť pole ARRAY_u, ktoré sme použili pri prenosovej funkcii, keďže všetky modely sú budené rovnako.

Stavové premenné – x

Pole stavových premenných vytvoríme podobne ako pri prenosovej funkcii a nazveme ho ARRAY_x_SS.

🏷 Modify Solver Array 🛛 🛛 🔀		
Name	ARRAY_X_SS	
Solver ID	5	
Туре	X (States)	
Size	2	
	OK Apply Cancel	

Obr. 10 Definícia poľa stavových premenných pre SS

Výstup – y

Výstupy budeme ukladať do poľa výstupov s názvom ARRAY_y_SS.

🔿 Modify Solver Array 🛛 🛛 🔀		
Name	ARRAY_y_SS	
Solver ID	4	
Туре	Y (Outputs)	
Size	2	
	<u>O</u> K <u>Apply</u> <u>Cancel</u>	

Obr. 11 Definícia poľa výstupných premenných pre SS

Matice

V ďalšom je potrebné nadefinovať jednotlivé matice a vektory charakterizujúce model v stavovom priestore. Matice pre tieto účely definujeme v menu:

MB >> Build >> Data Elements >> Matrix >> New ...

Matica A

Systémovú maticu A nazveme MATRIX_A. Z predchádzajúceho vidíme, že A je definovaná ako:

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}$$

🔿 Modify Matrix					×
Matrix Name	MATRIX_	A			
Units	no_units			•	
Full Matrix 🔻					
Enter input order	red by row	s	•		
User Entered Nu	Imbers	•			
Row Count	:	2			
Column Count	[:	2			
Values 0.0 1.0 (-k / m) (-b / m)					
		ОК		Apply	Cancel

Obr. 11 Definícia systémovej matice A pre SS

Matica B

Maticu vstupu B nazveme MATRIX_B a definujeme obdobne:

🚿 Modify Matrix			×
Matrix Name MATRIX	(_В		
Units no_units	3	•	
Full Matrix 💌			
Enter input ordered by ro	ws 💌		
User Entered Numbers	•		
Row Count	2		
Column Count	1		
Values	0.0 (1 / m)		
	,_ , _,		
	OK	Apply	Cancel

Obr. 12 Definícia matice vstupu B pre SS

Matica C

Moury Matrix	
Matrix Name MA	TRIX_C
Units no_	units 🗾
Full Matrix 💌	
Enter input ordered b	y rows
User Entered Numbe	rs 🔽
Row Count	2
Column Count	2
Values	1.0,0.0,0.0,1.0
1=1	
	OK L Anniv Cancel

Matica výstupu C je jednotková a má názov MATRIX_C.

Obr. 13 Definícia matice výstupu C pre SS

Matica D

Matica prenosu D je nulová a má názov MATRIX_D.

🔀 Modify Matrix	· · · · · · · · · · · · · · · · · · ·
Matrix Name MATRI	IX_D
Units no_uni	its 💌
Full Matrix	
Enter input ordered by ro	ows 💌
User Entered Numbers	•
Row Count	2
Column Count	1
Values	0.0,0.0
12	
	OK Apply Cancel

Obr. 14 Definícia matice prenosu D pre SS

Model v stavovom priestore – Linear State Equations

Model sústavy s jedným stupňom voľnosti v stavovom priestore nazveme State_Space, zadefinujeme v menu:

MB >> System Elements >> Linear State Equations >> New ...

a doplníme jeho parametre.

🛛 Part Modify Equation Linear State Equation 🛛 🛛 🔀		
inear State Equation Name State_Space		
New Linear State Equation I		
Adams Id	1	
Comments		
X State Array Name	ARRAY_x_SS	
U Input Array Name	ARRAY_u	
Y Output Array Name	ARRAY_y_SS	
Ic Array Name		
A State Matrix Name	MATRIX_A	
B Input Matrix Name	MATRIX_B	
C Output Matrix Name	MATRIX_C	
D Feedforward Matrix Name	MATRIX_D	
Static Hold	on 💌	
	OK Apply Cancel	

Obr. 15 Definícia modelu v stavovom priestore

Pre porovnanie si vytvoríme merač s názvom MEA_x_SS so syntaxou:

MB >> Build >> Measure >> Function >> New ...

ARYVAL(ARRAY_y_SS,1)

Obr. 16 Priebeh výstupu z modelu State_Space (posunutie ťažiska telesa PART_2)

3 Model vo forme diferenciálnej rovnice Ordinary Differential Equation - ODE

V predchádzajúcich kapitolách sme uviedli, že pohyb sústavy možno opísať diferenciálnou rovnicou II. rádu:

$$m(x) + b(x) + kx(t) = F(t)$$

Keďže program MSC.ADAMS umožňuje definovať iba diferenciálnu rovnicu I. rádu, opäť zavádzame premennú v(t) (rýchlosť telesa PART_3). Potom môžeme diferenciálnu rovnicu II. rádu prepísať na sústavu dvoch diferenciálnych rovníc I. rádu s novým označením nasledovne:

$$\mathbf{x}_{DOT} = \mathbf{k}(t) = \mathbf{v}(t)$$
$$\mathbf{v}_{DOT} = \mathbf{k}(t) = -\frac{b}{m}\mathbf{v}(t) - \frac{k}{m}\mathbf{x}(t) + \frac{1}{m}F(t)$$

Diferenciálne rovnice nájdeme v menu:

MB >> Build >> System Elements >> Differential Equations >> New ...

Najprv zadefinujeme v explicitnej forme prvú diferenciálnu rovnicu, ktorú nazveme x_DOT ("x s bodkou"). Príkaz DIF znamená integráciu diferenciálnej rovnice v_DOT, ktorá ešte nie je vytvorená, preto programu vyhlasuje chybu pri ukladaní rovnice.

🔿 Modify Differential Equation				
Name x_DOT				
Type Explicit				
Definition Run-Time Expression				
y' = DIF(v_DOT)				
Initial Condition:				
y [t=0] = 0.0				
Keep value constant during static analyses.				
	ОK	Apply	Cancel	

Obr. 17 Definícia diferenciálnej rovnice x_DOT

Podobným spôsobom zadefinujeme diferenciálnu rovnicu v_DOT.

🔿 Modify Differential Equation					
Name v_DOT					
Type Explicit					
Definition Run-Time Expression					
y' = -(b/m)*DIF(v_DOT)-(k/m)*DIF(x_DOT)+(1/n	n)*varval(VAR	_u)		
Initial Condition:					
y [t=0] = 0.0					
Keep value constant during static analyses.					
	OK	Apply	Cancel		

Obr. 18 Definícia diferenciálnej rovnice v_DOT

Pre porovnanie znovu nadefinujeme merač výstupu z diferenciálnej rovnice. Keďže diferenciálna rovnica nám poskytuje hodnotu prvej derivácie, pre získanie polohy je potrebné túto premennú integrovať príkazom DIF. Merač nazveme MEA_x_ODE a zadefinujeme štandardne v menu

MB >> Build >> Measure >> Function >> New ...

DIF(x_DOT)

Obr. 19 Priebeh integrovanej hodnoty diferenciálnej rovnice x_DOT (posunutie ťažiska telesa PART_2)