2-5520 Theory of Mechanisms

Glossary

for bachelors study in 3rd year-classis, summer semester Lecturer: Assoc. Prof. František Palčák, PhD., ÚAMM 02010

Lecture 9: Spherical motion of the body

Sections in Lecture 9:

- S1 Spherical motion, Euler's angles for precession, nutation and local rotation. Open mechanism.
- S2 Axoidal cones. Turning and centering acceleration of the point.
- S3 Euler's kinematic equation

S1 Spherical motion, Euler's angles for precession, nutation and local rotation.

- Spherical motion The local frame (O_2, x_2, y_2, z_2) of the body $E \equiv 2$ represented by the radius vector \overline{r}_A (for example a joistick on Fig. 1) and ground reference frame (O_1, x_1, y_1, z_1) they have coincident origins $(O_2 \equiv O_1 \equiv S)$ during spherical motion of body 2 wrt ground 1. The local mobility $n_t = n_v - t$ of body $E \equiv 2$ in spherical joint of the class t = 3 is $n_3 = 3$ so the position of the body $E \equiv 2$ wrt ground 1 can be determined by three independent position coordinates (for example by the Euler's angles y, q, j).
- Euler angles Let us consider that initial position of local frame $(O_2, x_2, y_2, z_2)_T$ of body E is coincident with ground frame (O_1, x_1, y_1, z_1) . It is to determine three independent position coordinates (so-called 3-1-3 Euler's angles y, q, j) by which is uniquely described final position $(O_2, x_2, y_2, z_2)_{II}$ the body E. The of line $\mathbf{x}_{\psi} \equiv (\mathbf{x}_1, \mathbf{y}_1) \times (\mathbf{x}_2, \mathbf{y}_2)$ of intersection of both frame planes on Fig.1 provides us by angle $y \equiv (x_1, x_{\psi})$, or $y \equiv (y_1, y_{\psi})$, which should be applied as a first slew (precession) of local frame of body E about axis z_1 . The angle $q \equiv (z_1, z_2)$ which yield from mutual position of axes z_1, z_2 or $q \equiv (y_w, y_\theta)$ is applied for a second slew (nutation) of local frame of body E about axis x_w . The local frame of body E will achieve it's final position $(O_2, x_2, y_2, z_2)_{II}$ after application of third slew (spin) about axis z_2 by angle $y \equiv (x_w, x_2)$, or $y \equiv (y_{\theta}, y_2)$.

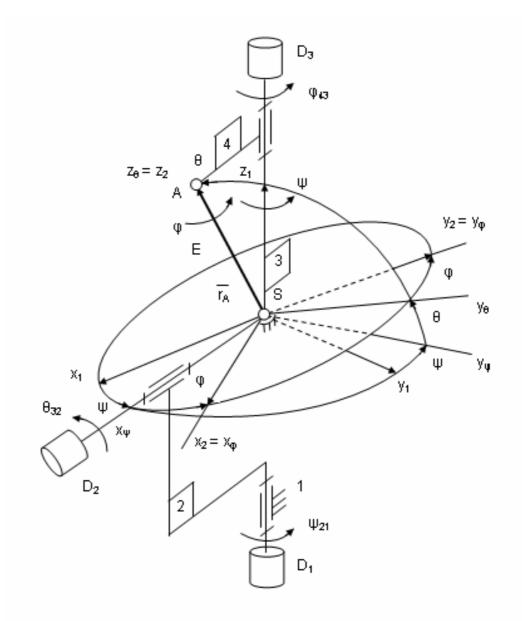


Fig.1 Initial and final position of body E frame determined by Euler's angles y, q, j.

Open mechanism Body E constrained to ground by spherical joint can be uniquely relocated from its initial first position of local frame $(O_2, x_2, y_2, z_2)_I$ into prescribed final second position $(O_2, x_2, y_2, z_2)_{II}$ by spherical open mechanism on Fig. 1, consisting from number u = 4 of links, number $s_3 = 3$ of revolute joints and with mobility n = 3. Part 4 of this open mechanism is carrying out spherical motion 4/1 equivalent from kinematics point of view with motion of part E. Three drivers D₁, D₂, D₃ realize subsequently or instantaneously three slews by angles of precession y_{21} , nutation q_{32} and local rotation j_{43} about axes permanently passing trough the centre S of

spherical motion. Instantaneous angular velocity \overline{w} expressed in local systems is the sum of angular velocities

$$\overline{W} = y \& \overline{k}_{I} + q \& \overline{i}_{\psi} + j \& \overline{k}_{II}$$

Using notation for open mechanism on Fig. 1 the average angular velocity \overline{w}_{41} of spherical motion of fictive link E will be the sum of average angular velocities

$$\overline{W}_{41} = \overline{y} \overline{\&}_{43} + \overline{q} \overline{\&}_{32} + \overline{j} \overline{\&}_{21}$$

S2 Centroidal cones. Turning and centering acceleration of the point.

Axoidal cones The tip A of radius vector \overline{r}_A on Fig. 2 displaces into near infinitesimal position by instantaneous slew of body E about axis o_w of a rotation, line of action of instantaneous angular velocity \overline{w} which is tangent of a movable axoidal cone c_2 rolling against fixed axoidal cone c_1 during spherical motion of body E wrt ground 1. Spherical motion occurs under condition $\overline{w} \times \overline{a} \neq \overline{0}$ when line o_w of action of instantaneous angular velocity \overline{w} and line o_a of action of instantaneous angular acceleration \overline{a} are intersection lines.

- Velocity \overline{v}_A Instantaneous velocity of tip A of radius vector \overline{r}_A is given by Euler's equation $\overline{v}_A = \overline{w} \times \overline{r}_A$ like at rotational motion.
- Acceleration \overline{a}_A Instantaneous acceleration $\overline{a}_A = \overline{a} \times \overline{r}_A + \overline{w} \times \overline{v}_A$ of a tip A of radius vector \overline{r}_A can be obtained by time derivation of equation $\overline{v}_A = \overline{w} \times \overline{r}_A$ but unlike rotational motion there are skew lines of action for of instantaneous angular velocity \overline{w} and instantaneous angular acceleration \overline{a} . So instead tangential and normal components, the first term $\overline{a}_{\alpha A} = \overline{a} \times \overline{r}_A$ is denoted as turning acceleration and second term $\overline{a}_{\omega A} = \overline{w} \times \overline{v}_A$ is denoted as centering acceleration of the point A.

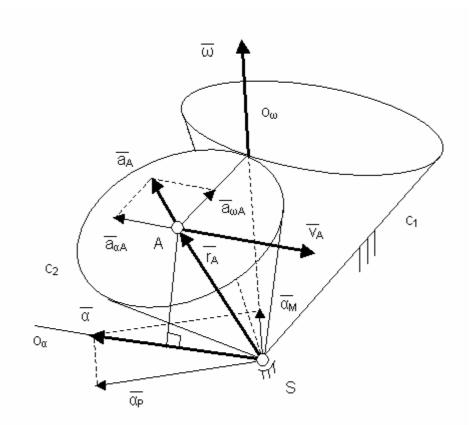


Fig. 2 Instantaneous angular velocity \overline{w} and angular acceleration \overline{a} of a spherical motion of radius vector \overline{r}_A .

Projections \bar{a}_{M}, \bar{a}_{P} Instantaneous angular acceleration \bar{a} has projection \bar{a}_{M} into line o_{W} of action of instantaneous angular velocity \bar{W} and perpendicular projection \bar{a}_{P} , so $\bar{a} = \bar{a}_{M} + \bar{a}_{P}$. Projection \bar{a}_{M} causes time change of angular velocity \bar{W} magnitude and perpendicular projection \bar{a}_{P} changes orienation of angular velocity \bar{W} .

S3 Euler's kinematic equation

Euler's kin. eq. For purpose to express instantaneous velocity \overline{v}_A and acceleration of tip A of body E it is necessary to transform its instantaneous angular velocity $\overline{w} = y \& \overline{k}_I + q \& \overline{i}_{\psi} + j \& \overline{k}_{II}$ in the local system $(O_2, x_2, y_2, z_2)_{II}$

$$\overline{W}_{E} = W_{x}\overline{i}_{II} + W_{y}\overline{j}_{II} + W_{z}\overline{k}_{II}$$

Authorized Training Center for MSC.ADAMS, STU Bratislava; http://www.sjf.stuba.sk

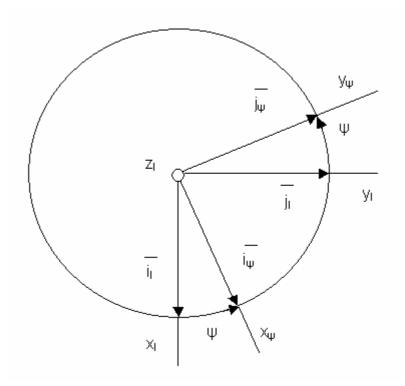


Fig. 3 Relationships between unit vectors $\overline{i}_1, \overline{j}_1, \overline{i}_{\psi}, \overline{j}_{\psi}$ for slew angle y

Relationships between unit vectors can be obtained by their projections during all three slews by Euler's angles y, q, j like

$$\overline{\mathbf{i}}_{\mathrm{I}} = \left(\overline{\mathbf{i}}_{\mathrm{I}}, \overline{\mathbf{i}}_{\psi}\right) \overline{\mathbf{i}}_{\psi} + \left(\overline{\mathbf{i}}_{\mathrm{I}}, \overline{\mathbf{j}}_{\psi}\right) \overline{\mathbf{j}}_{\psi}$$

on Fig. 3 which yields to the form

 $\overline{i}_{I} = c \psi \overline{i}_{\psi} - s \psi \overline{j}_{\psi}$

Euler's kinematic equation is used in the form

$$\overline{W}_{\rm E} = (y \& s q \ s j \ + \ q \& c j \) \overline{i}_{\rm II} \ + \ (y \& s q \ c j \ - \ q \& s j \) \overline{j}_{\rm II} \ + \ (y \& c q \ + \ j \&) \overline{k}_{\rm II}$$