2-5520 Theory of Mechanisms

Glossary

for bachelors study in 3rd year-classis, summer semester Lecturer: Assoc. Prof. František Palčák, PhD., ÚAMM 02010

Lecture 9: Spherical motion of the body

Sections in Lecture 9:

- S1 Spherical motion, Euler's angles for precession, nutation and local rotation. Open mechanism.
- S₂ Axoidal cones. Turning and centering acceleration of the point.
- S3 Euler´s kinematic equation

S1 Spherical motion, Euler's angles for precession, nutation and local rotation.

- Spherical motion The local frame (O_2, x_2, y_2, z_2) of the body E = 2 represented by the radius vector \overline{r}_{A} (for example a joistick on Fig. 1) and ground reference frame (O_1, x_1, y_1, z_1) they have coincident origins $(0, \equiv 0, \equiv S)$ during spherical motion of body 2 wrt ground 1. The local mobility $n_1 = n_v - t$ of body $E = 2$ in spherical joint of the class $t = 3$ is $n_3 = 3$ so the position of the body $E = 2$ wrt ground 1 can be determined by three independent position coordinates (for example by the Euler´s angles *y* ,*q* ,*j*).
- Euler angles Let us consider that initial position of local frame $(0_2, x_2, y_2, z_2)$ of body E is coincident with ground frame (O_1, x_1, y_1, z_1) . It is to determine three independent position coordinates (so-called 3-1-3 Euler's angles y , q , j) by which is uniquely described final position $(O_2, x_2, y_2, z_2)_{\text{II}}$ of the body E. The line $x_{\nu} \equiv (x_1, y_1) \times (x_2, y_2)$ of intersection of both frame planes on Fig.1 provides us by angle $y \equiv (x_1, x_2)$, or $y \equiv (y_1, y_2)$, which should be applied as a first slew (precession) of local frame of body E about axis z_1 . The angle $q \equiv (z_1, z_2)$ which yield from mutual position of axes z_1, z_2 or $q \equiv (y_w, y_0)$ is applied for a second slew (nutation) of local frame of body E about axis x_{ψ} . The local frame of body E will achieve it's final position (O_2, x_2, y_2, z_2) _{II} after application of third slew (spin) about axis z_2 by angle $y \equiv (x_w, x_2)$, or $y \equiv (y_\theta, y_2)$.

Fig.1 Initial and final position of body E frame determined by Euler´s angles *y* ,*q* ,*j* .

Open mechanism Body E constrained to ground by spherical joint can be uniquely relocated from its initial first position of local frame (O_2, x_2, y_2, z_2) _I into prescribed final second position $(O_2, x_2, y_2, z_2)_{II}$ by spherical open mechanism on Fig. 1, consisting from number $u = 4$ of links, number $s_3 = 3$ of revolute joints and with mobility $n = 3$. Part 4 of this open mechanism is carrying out spherical motion 4/1 equivalent from kinematics point of view with motion of part E. Three drivers D_1 , D_2 , D_3 realize subsequently or instantaneously three slews by angles of precession y_{21} , nutation q_{32} and local rotation j_{43} about axes permanently passing trough the centre S of

spherical motion. Instantaneous angular velocity \overline{w} expressed in local systems is the sum of angular velocities

$$
\overline{W} = y\&\overline{k}_1 + q\overline{\mathbf{r}_1} + j\overline{\mathbf{r}_2}
$$

Using notation for open mechanism on Fig. 1 the average angular velocity \overline{w}_{41} of spherical motion of fictive link E will be the sum of average angular velocities

$$
\overline{W}_{41} = \overline{y\mathbf{R}}_{43} + \overline{q\mathbf{S}}_{32} + \overline{j\mathbf{S}}_{21}
$$

S2 Centroidal cones. Turning and centering acceleration of the point.

Axoidal cones The tip A of radius vector \overline{r}_A on Fig. 2 displaces into near infinitesimal position by instantaneous slew of body E about axis σ_w of a rotation, line of action of instantaneous angular velocity \overline{w} which is tangent of a movable axoidal cone c₂ rolling against fixed axoidal cone c_1 during spherical motion of body E wrt ground 1. Spherical motion occurs under condition $\overline{w} \times \overline{a} \neq \overline{0}$ when line σ_w of action of instantaneous angular velocity \overline{w} and line σ_a of action of instantaneous angular acceleration \overline{a} are intersection lines.

- Velocity \overline{v}_A Instantaneous velocity of tip A of radius vector \overline{r}_A is given by Euler's equation $\overline{v}_A = \overline{w} \times \overline{r}_A$ like at rotational motion.
- Acceleration \overline{a}_4 Instantaneous acceleration $\overline{a}_A = \overline{a} \times \overline{r}_A + \overline{w} \times \overline{v}_A$ of a tip A of radius vector \overline{r}_A can be obtained by time derivation of equation $\overline{v}_A = \overline{w} \times \overline{r}_A$ but unlike rotational motion there are skew lines of action for of instantaneous angular velocity \overline{w} and instantaneous angular acceleration \overline{a} . So instead tangential and normal components, the first term $\overline{a}_{\alpha A} = \overline{a} \times \overline{r}_A$ is denoted as turning acceleration and second term $\overline{a}_{\alpha A} = \overline{w} \times \overline{v}_A$ is denoted as centering acceleration of the point A.

Fig. 2 Instantaneous angular velocity \overline{w} and angular acceleration \overline{a} of a spherical motion of radius vector \overline{r}_{A} .

Projections $\bar{a}_{\rm M}$, $\bar{a}_{\rm p}$ Instantaneous angular acceleration $\bar{a}_{\rm M}$ has projection $\bar{a}_{\rm M}$ into line σ_w of action of instantaneous angular velocity \overline{w} and perpendicular projection \bar{a}_P , so $\bar{a} = \bar{a}_M + \bar{a}_P$. Projection \bar{a}_M causes time change of angular velocity \overline{w} magnitude and perpendicular projection \bar{a}_P changes orienation of angular velocity *w* .

S3 Euler´s kinematic equation

Euler's kin. eq. For purpose to express instantaneous velocity \overline{v}_A and acceleration of tip A of body E it is necessary to transform its instantaneous angular velocity $\overline{w} = y \overline{\mathbf{k}_{\perp}} + q \overline{\mathbf{k}_{\perp}} + j \overline{\mathbf{k}_{\perp}}$ in the local system $(O_2, X_2, Y_2, Z_2)_{II}$

$$
\overline{W}_{\text{E}} = W_{\text{x}} \overline{i}_{\text{II}} + W_{\text{y}} \overline{j}_{\text{II}} + W_{\text{z}} \overline{k}_{\text{II}}
$$

Authorized Training Center for MSC.ADAMS, STU Bratislava;<http://www.sjf.stuba.sk>

Fig. 3 Relationships between unit vectors $\overline{i_1}, \overline{j_1}, \overline{i_v}, \overline{j_v}$ for slew angle y

Relationships between unit vectors can be obtained by their projections during all three slews by Euler´s angles *y* ,*q* ,*j* like

$$
\overline{i}_I = (\overline{i}_I . \overline{i}_\psi) \overline{i}_\psi + (\overline{i}_I . \overline{j}_\psi) \overline{j}_\psi
$$

on Fig. 3 which yields to the form

 $\overline{i_1} = c \psi \overline{i_{\psi}} - s \psi \overline{j_{\psi}}$

Euler´s kinematic equation is used in the form

$$
\overline{W}_{E} = (y\&sq\text{ }sj + q\&q\text{ }j\text{ } \overline{1}_{II} + (y\&sq\text{ }cj - q\&q\text{ }j\text{ } \overline{1}_{II} + (y\&q\text{ }q + j\&q\text{ } \overline{k}_{II}
$$