2-5532 Theory of Mechanisms

Applied Mechanics and Mechatronics for bachelor study, year 3, summer sem. Guarantee: Assoc.Prof. František Palčák, PhD., ÚAMM 02010

Lecture 3: Triad TNB and rotational motion

Sections in Lecture 3:

- S1 Triad TNB of local coordinate system unit vectors with origin moving along space curve
- S2 Rotational motion

S1 The triad \overline{t} , \overline{n} , \overline{b} of local coordinate system unit vectors with origin A moving along space curve

Triad \overline{t} , \overline{n} , \overline{b} Welding electrodes E_1 , E_2 have to be oriented along main normal n of space trajectory of centre A of the effector.

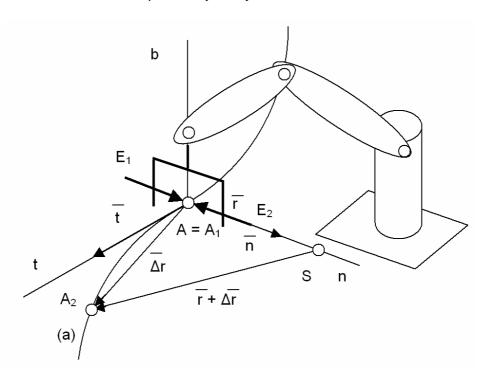


Fig.1 Triad \overline{t} , \overline{n} , \overline{b} of local coordinate system unit vectors with origin moving along space curve

Velocity

The instantaneous velocity \overline{v} of the tip point A of position vector \overline{r} can be derived as limit

$$\frac{lim}{\Delta t \rightarrow 0} \frac{\Delta \overline{r}}{\Delta t} = \frac{d\overline{r}}{dt} = \overline{r} = \overline{v}$$

Institute of Applied Mechanics and Mechatronics, Faculty of Mechanical Engineering STU Bratislava; http://www.sjf.stuba.sk

Let us consider $s=A_1A_2$ as curvilinear position coordinate of the point A_2 wrt the point A_1 and ds is an infinitesimal value

$$ds = \frac{\lim \Delta \overline{r}}{\Delta \overline{r} \to 0}$$

then

$$\overline{v} = \frac{d\overline{r}}{dt} = \frac{d\overline{r}}{ds} \frac{ds}{dt} = \overline{t} v$$

the unit tangential vector \overline{t} and vector \overline{K} of flexuosity are defined in the differential geometry

$$\frac{d\overline{r}}{ds} = \overline{t} \ , \ \frac{d\overline{t}}{ds} = \overline{K} = K \ \overline{n} \ , \ \overline{K} = \frac{1}{R} \overline{n}$$

Acceleration

The instantaneous acceleration is

$$\overline{a} = \frac{d\overline{v}}{dt} = \frac{d(\sqrt[8]{t})}{dt} = \sqrt[8]{t} + \sqrt[8]{dt} = \overline{a}_t + \overline{a}_n$$

$$\frac{d\overline{t}}{dt} = \frac{d\overline{t}}{ds}\frac{ds}{dt} = \overline{K} \& = \frac{1}{R}\overline{n} \&$$

$$\overline{a}_{t} = \Re \overline{t}$$
 , $\overline{a}_{n} = \Re \overline{R}$ \overline{n}

In general is $\overline{a} \neq \frac{dv}{dt} = a_t$ this is valid only for rectilinear motion

$$a_t = \frac{dv}{dt} = \frac{dv}{ds} \frac{ds}{dt} = \frac{d(v^2)}{2ds}$$

$$a_t ds = v dv$$

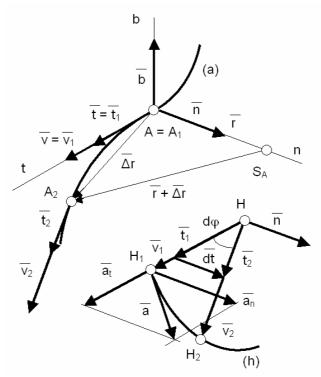


Fig.2 Hodograph (h) as locus of tip points of velocities

S2 Rotational motion

Rotational motion

The arm of welding robot represented by position vector $\overline{\mathbf{r}}$ rotates from initial position $\overline{\mathbf{r}}_1$ to the subsequent position $\overline{\mathbf{r}}_2$ about fixed axis with unit vector $\overline{\mathbf{e}}$, so trajectory of end point A is a circle (a) and magnitude $|\overline{\mathbf{r}}_1|=\mathbf{r}$ and $|\overline{\mathbf{r}}_2|=\mathbf{r}$. When we consider an infinitesimal angle $d\mathbf{j}$ of slew of position vector $\overline{\mathbf{r}}$, then line of action of $d\overline{\mathbf{r}}$ becomes the tangent to the position vector $\overline{\mathbf{r}}$. The vector $d\overline{\mathbf{j}}$ perpendicular to the position vector $\overline{\mathbf{r}}$ represents the magnitude and orientation of angle $d\mathbf{j}$ of slew.

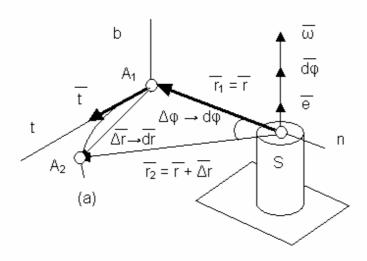


Fig.3 The welding robot with rotating arm

Velocity

According to rule of vector cross product we can write

$$d\overline{r} = d\overline{j} \times \overline{r} \tag{1}$$

Regarding that during infinitesimal small change dt of time the position vector \overline{r} as a finite quantity will remain without change, the time derivate of equation (1) is then in the form

$$\frac{d\overline{r}}{dt} = \frac{d\overline{f}}{dt} \times \overline{r}$$
 (2)

The time rate of change of the position vector $\overline{\mathbf{r}}$ is vector $\overline{\mathbf{v}}$ of instantaneous velocity and time rate of change of the angular position vector $\mathbf{d}\mathbf{j}^-$ is vector $\overline{\mathbf{w}}$ of instantaneous angular velocity of rotation of the position vector $\overline{\mathbf{r}}$, so from equation (2) we obtain a formula

$$\overline{\mathbf{v}} = \overline{\mathbf{w}} \times \overline{\mathbf{r}} \tag{3}$$

Equation (3) is known as Euler's equation for instantaneous velocity \overline{v} of end point A of rotating radius vector \overline{r} .

Acceleration

The instantaneous acceleration can be derived as time derivate of cross product in the equation (3)

$$\overline{a} = \frac{d\overline{v}}{dt} = \frac{d(\overline{w} \times \overline{r})}{dt} = \frac{d\overline{w}}{dt} \times \overline{r} + \overline{w} \times \frac{d\overline{r}}{dt}$$
(4)

time rate of change of the instantaneous angular velocity \overline{w} is a vector \overline{a} of instantaneous angular acceleration of rotation of the position vector \overline{r}

$$\overline{a} = \overline{a} \times \overline{r} + \overline{w} \times \overline{v} \tag{5}$$

The first term in the (5) can be expressed in the form

$$\overline{a} \times \overline{r} = a\overline{e} \times \overline{r} = ar\overline{t} = a_{t}\overline{t}$$
 (6)

Substituting $\overline{\rm v}$ in second term in the (5) from equation (3) we have to develop double cross product

$$\overline{w} \times (\overline{w} \times \overline{r}) = \overline{w}(\overline{w}.\overline{r}) - \overline{r}(\overline{w}.\overline{w}) = -\overline{r}w^2 = rw^2\overline{n} = a_n\overline{n}$$
 (7)

Substituting (6), (7) into equation (5) we obtain instantaneous acceleration \overline{a} of end point A of rotating radius vector \overline{r}

$$\overline{a} = ar\overline{t} + rw^2\overline{n} \tag{8}$$