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2-5520 Theory of M echanisms
Glossary
for bachelors study in 3rd year-classis, summer semester
Lecturer: Assoc. Prof. Frantidek Pal¢ak, PhD., UAMM 02010

Lecture 11: Kinematic position analysis of mechanismsin matrix notation

Sectionsin Lecture 11:

S1 Position, transformation, Euler parameters, basic motions, simultaneous motions,
S2 The fictive cut across frame and arbitrary link in the basic loop of links.

S3 Velocities, accelerations and numeric kinematic analysis.

S1 Graphical methods of Poissont‘s decomposition of general planar motion of the body

Position of point L Position LT b° 2 (see Fig.1) of point L from part (link) b° 2
relative to reference part a © 1 (ground) can be described by radius
vector T, = X, ,YaZy U With Cartesian position coordinates

L(X,,Y4,24), OF by radius vector in matrix notation
ra = &, YarZy 13 with homogeneous position cordinates
L(X,, X,, X5, X,) scaled by factor x, =1 inrelations
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Fig.1 Position of point L from part (link) b° 2 (LT b©° 2) relative to reference part a © 1
(ground)

Transformations The relation between projections of local position radius vector T,
and global local position radius vector T, in matrix notation

oo = &oes Your Zooo 2y T = 8Xas Ya» Za 19 Can be expressed by
transformation equation

&XaUu €ay; a, a; auéx,u
u e u u
ai_ g 2 B By

gzaLg gas 8y, Ay asggzug
élag 60 0 0 1gelaq

(4.9

where T, = éa,, a,, ;] is radius vector with Cartesian position
coordinates of the origin O, relative to the origin O, .

Equation (4.4) can be written in more concise forms

QraLU_é‘Sab yUer, u 4.7)
g1 €0 1ugly
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Euler parameters

where S, isorthonormal and intrinsic matrix of directional cosines
(shortly matrix S, of directional cosines) in which elements are
given by dot products of corresponding unit vectors. For example
a, = 00Say, =Coy,y = i .0,.

Let we denote T, as a transformation matrix (transformation

operator) of mutual position of local position frames of part b
relative to reference part a (ground)

€S, T,u
T, = a ? (4.8)
® g0 1y

Transformation equation (4.4) has afinal form of a symbolic matrix
equation

Fa = Taly (4.9

with transformation of local position radius vector r,, into global
position radius vector r, with homogeneous position cordinates.

Multiplying matricesin Eq. (4.7) we obtain a eguation of trajectory
of point point L from part b relative to reference part a

T, =S, +T, (4.10)

according to theory of decomposition of general motion b: a into
fictive translational motion of part b represented by reference point
O, and by fictive spherical motion of part b about the origin O, .

Trajectory of reference point O, moving relative to reference part
a is described by radius vector T, . Trajectory of point L during

fictive spherical motion of part b relative to reference part b is
described by radius vector T, and relative to reference part a by

term S, T, .
Euler angles (v, 0, @) representation degeneratesnear 6 = 0 so to

avoid of singularity it is more advantageous to describe spherical
motion of part b relative to reference part a (O, ° O,) by

quaternion €, with four Euler parameters

Co =& tei, vej, tek, (4.10)
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Fig.2 Theradius vector T, , rep. T, intheinitial, resp. final position T, of the point L during
of spherical motion of part b relative to reference part a (O, © O,).

Quaternion e

The idea of quaternion €, is based on finite rotation of part b
from initial position (Fig.2), represented by radius vector T, of the
point L to the final position T . by anangle F around an axis o,

which position is described wrt global coordinate system of
reference part a by directional angles (a, B,y). The axis o, is

passing a fixed point O, and it isthe line of action of unit vector n.

The quaternion &, can be expressed as sum:
é,=-6te= cos% + sin%ﬁ (4.12)

where g, isscalar and € isvector quantity.

The quaternion &, can be also expressed in matrix notation as

e o D D du
E, =6, €, &, ] = &&—, ca S—, cf s—, ¢y s—, (4.13
abgaoelze3u82a2BZCY2H()
and it can be calculated from matrix S, of directional cosines.

The general spatial motion of b:a may be described by shortened
dual quaternion

éab = [éab’Teb] = [eo’ €, €, &,a,a, as] (4.14)


http://www.sjf.stuba.sk

Authorized Training Center for MSC.ADAMS, STU Bratislava; http://www.sjf.stuba.sk

Basic motions

Basic matrices

Simultaneous motion

where T, = éa,, &,, ;] is radius vector of the origin O, relative
totheorigin O ,.
Let local coordinate systems of parts b and a be coincident in the

initial mutual position, then translations of b:a aong axes
X ., Y. Z, designated by indices Z1, 72, Z3 and rotations b: a

about axes x .,V ,, Z, designated by indices Z4, Z5, Z6 are caled
basic motions.

Transformation matrices T,,(X), T,(Y), T;4(2), Tu(e,), Tx(0,),

T,(p,) of the basic motions (displacements) are caled abasic
transformation matrices.

Let we consider asimultaneous motions of two movable parts
(part2, part3) in a open mechanism with reference partl (ground)
and point LT part3. Using transformation equation (4.9):

ra = Tyl Wecanwrite

ry = Tolo s (4.15)
Mo, = Tyula s (4.16)
Substituting (4.16) into (4.15) we obtain

ry = ToTuls (4.17)
we can also write

ry = Tala (4.18)

and comparing (4.17) with (4.18) we obtain a transformation matrix
T,, of resulting motion of part3 : partl
T13 = T12T23 (419)

where T,, istransformation matrix of simultaneous carrying motion
and T, is transformation matrix of simultaneous local relative
motion.

S2 Thefictive cut acrossframe and arbitrary link in the basic loop of links.

Number ¢

Number ¢ is total number of local position coordinates
g,,i =12,...,c of the links in the mechanism

t
J"
c=ans
t=1

and it isasum c=n+z, where n is number of independet local
position coordinates of the links (also n is mobility of mechanism)


http://www.sjf.stuba.sk

Authorized Training Center for MSC.ADAMS, STU Bratislava; http://www.sjf.stuba.sk

Number z g

Virtual cut of MM

g,;,1=12,..,n,and

z isnumber of dependet local position coordinates of the links
q,,1=12,.,z.

The actual number z¢ £ 6 of unknown dependet local position

coordinates of the links in single loop (JM) spatial mechanism can
be determined from a system of maximum number z = 6 mutually
linear independet of constraint equations.

Fig.3 The single loop (JM) spatial mechanism

When the closed loop of links 1,2,..,k,..,u in single loop (JM)

gpatial mechanism from Fig.3 is splitted by a virtual cut
symbolically in space of link k into two open submechanisms
OM1: 12,..,k-1,k and OM2: 1, u,..., k+1, k, they both have the
same end link k.

The position equations of arbitrary point LT k corresponding to
open submechanisms OM1, OM2 have equal left sides

r1L = T12T23"'Tk-1,krkL ! r1L = -I-luTu,u-l"'Tk+1,krkL'

From comparison of right sides of equations yield

Tl T = T Tuua e Teenk (4.29)

Vanishing r,, in eg. (4.29) we obtain matrix equation (4.30) of
mutual position of links in single loop (JM) mechanism

Tl T = TuTowaTeor (4.30)

1u "u,u-1*"
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Proper elements

After multiplication of transformation matrices we can compare
corresponding elements in the matrices of the rank (4x4) on left and
right side of equation (4.31a)

¢, A A Ay &, A A Ay
< A AY & A AY
éa21L a22L lj - éa21R a22R lj

émiﬂL a'3:2L a33L A 3 ém?m? a32R a33R A 3
80 0 0 13 &0 0 0 1§

(4.31d)

which yield to asystem of four identities and 12 nonlinear
constraint algebric equations where q,, resp. ¢, are dependet,

resp. independent local position coordinates of links in single loop
(M) mechanism and zg, resp ng are their actual numbers.

Because matrix S, of directional cosines is orthonormal and

intrinsic, then in the eg. (4.31a) is possible to compare maximum
number 3 of its elements and maximum number 2 elements from
single column. By the symbols A is depicted one possible
combination of elements selection for process of comparison. To
obtain numerically stable solution of a system of maximum 6
nonlinear constraint algebric equations for single loop (IM)
mechanism the most advantageous selection is combination with
maximum value of corresponding equation determinant.

S3 Velocities, accelerations and numeric kinematic analysis.

Velocitiesin OM

Accelerations in OM

The transformation matrix is given by eg. TM (4.74):
= i

Tab = O TZ ( piab)
i=1
= i

=0T, (p)r.

i=1

The time derivation of sum of transformation matrices we can
generalize into form

U, =T,T2.T,D,T,".T," (4.76¢)
Then the velocity v, of the point LT u will be

Vi = (g U p)r, (4.77)

i=1

The accelerations in OM we obtain after differentiation
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Velocitiesin M

Accelerations in IM

Velocitiesin VM

Accelerationsin VM

Numeric analysis of
position in MM

a, = [(é. U + é. Ui B, &k)]ruL (4.79)
i=1 k=1

U, =T T2.T,D. T TSDsTS . T, (4.80)

U, =T,T2.T,(D))*T, .1, (4.81)

The matrix equation of mutual position of links in single loop (JM)
mechanism splited by virtul cut is:

1

OT:(p)=0T:(p) (4.83)
i=1 i=1

The matrix equation for velocities will be:

aumb=aum (4.84)
i=1 i:mt+1

The accelerations in IM we obtain after differentiation

AUB+AUBBI=AUR+ AUbE) (489

e i -1
i=1 i=1 |_mp+1

The dveloped matrix equations for velocities of driven links in
single loop (JM) mechanism we apply for each basic loop of a
multiloop mechanism.

The dveloped matrix equations for accelerations of driven links in
single loop (JM) mechanism we apply for each basic loop of a
multiloop mechanism.

The actual number z; £ 6 of unknown dependet local position

coordinates of the links in single loop (JM) spatial mechanism can
be determined numericaly from a system of maximum number
z=6 mutually linear independet but nonlinear constraint algebric
equations.

According to general form of a matrix equation TM (4.30):
ToToge T = Ty T, T Of mutual position of links in single

u "uu-1°""
loop (M) mechanism based on idea of virtual cut we can write
equation with basic matrices. For numeric solution of position of

T(S)T(S) - T (S) = T (Sea) - Ta(S2) (4.89)
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We can substitute each transformation matrix by product of
congtant C, and variable P, matrices.

T (s)=CPi(s) (4.90)

Ci I:>i (Sl)CZ PZ(%)CkPk(S() = Ck+1pik+1(S<+1)"'Ca Pa(sa) (491)

Goal of the position kinematic analysis of the spatial mechanism
with known arithmetic vector @, = éq,,,,-.-,q,,, U Of independet global

position coordinates of the input link/or links is to determine the
time course for number z=nk of unknown dependet global

position coordinates of ouput links in the arithmetic vector

AN

g, =él,,.-.0,U solving nonlinear algebric constraint equations
f.(9,,...0,4) =0, 1=12,..,z by numerical iteration Newton-
Raphson (N-R) method.

In the initial configuration of mechanism the nonlinear algebric
constraint equations f can be linearized by approximation with the

sum of residual functions f_( ., obtained by introducing the
arithmetic vector T, : Sy = €S,,S,,...,S,;, Of estimated dependet

global position coordinates (r is number of iteration step) and
linear terms of Taylor series f @f,, +V,,,Da,,,, Where matrix

V. ,isJacobi matrix of therank (z x 2)
éqf u :
Viw=é_—u ,i=12...c, and j=12,...,z,and
e qu g(r)
Dq,,, = D8y, isunknown arithmetic vector of corrections.

k .
(CP.C,P,..C.P),) +8 (CP, .CPD,..C,P,),Ds =
i=1
k
(CeaPy (Ser)--CaPa(8)) ) + & (CitPy (Seur)--CoP(S,)) ) D5
i=1

The arithmetic vector f of nonlinear algebric constraint equations
is f =0 after introducing the solution @, but f* f,,, f ., 10
(residuals) after introducing the arithmetic vector q,,, =S, of

estimated dependet global position coordinates. The arithmetic
vector T,,, Will be the accepted solution, if residuals f |, £ f

, where f ; are prescribed tolerancies. This can be achieved by
iteration proces of converging numerical Newton-Raphson method

qZ(H—l) = az(r) + Isz(r) (499)
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which will finish, if corrections Da,,, meet the condition

Da,, £ x; where x ; are prescribed tolerancies.
M1m21+---+Mquzz :N0+Nlmnl+"'+sznn (495)
MDg, = N, + NDq, (4.96)

For given inputs is known

g,=0 (4.97)
then
MDg, =N, (4.98)

This equation is similar to the equation TM(2.7)

Vo DY 2 =+ T
Numeric analysis of Velocities &, of linksin VM we can determine after time
of velocitiesin VM derivation of equation (4.91):

CPi(s)C,P(S,).- CPi(s) = CiiaPi (Scia) - CaPa(s,) -

We obtain

acpP,.CPD,.C/P & =4 C.P,_ ..CPD..CP& (41013

it
i=1 i=1

Separating velocities & in the Eq.(4.101&) we obtain

M@, +...+ M6, = NG, +...+ N, G, (4.101b)
Selecting a proper set of 6 lineary independent scalar equations we
obtain equation

Mé, = N§, (4.102)

from which we can determine unknown arithmetic vector §, of
dependet velocities.

Numeric analysis of Accelerations &, of the linksin VM we determine by time
of accelerationsin VM derivation of equation (4.102): M§, = N§_

M§, + K§, = N§, +L§, (4.103)
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Rank h of amatrix M

Actual mobility ng

Augmented matrix R

Unremoved DOF

Zero matrix N

Where
s M ¢ M
K= —(, + —q, 4.104
ba=.1 qz& aa=.1 ﬂqn ( )
L= Ng g N (4.105)

b=lﬂ_qz a=1 1.[qn )

Let us denote by h the rank of amatrix M of type (z,z) from
equation (4.102): M@, = N§, for amechanism with k of basic
loops, mobility n, and number z=n,k of dependet position
coordinates of links.

Mechanisms have actual mobility ng = n if fulfilles condition

h=z (4.108)
Let usdenote by R the augmented matrix

R = (M, N) (4.109)
having the rank hy

In mechanism is unremoved n, DOF if

h=h.,<z (4.110)

s0 actual mobility ng is then ng=n+n. If condition (4.110) is

valid for whole cycle of mechanism, then mechanism is in
permanent singular state. If condition (4.110) is fulfilled for specific
configuration of links, then mechanism is in instantaneous singular
state.

For VMS with mobility ng £ 0 is natrix N =O and actual
mobility ng can be determined using rank h of amatrix M .
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